

NIGERIAN JOURNAL FOR TECHNICAL EDUCATION Volume 24 Nos. 2 2025 ISSN No. 2992 - 3522

A Framework for IoT-Enabled Smart Property Management Systems in Urban Real Estate

¹I. O. Oladoja, ²M. B. Akanbi, ³K. J. Adedotun, and ⁴A. K. Raji,

¹Department of Estate Management and Valuation, Kwara State Polytechnic, Ilorin

^{2,3,4}Department of Computer Science, Kwara State Polytechnic, Ilorin

¹waleivme@gmail.com, akanbiforu@gmail.com, ³khadijatadedotun@gmail.com, ⁴kamalayour2004@gmail.com

Abstract

The integration of Internet of Things (IoT) technologies into urban real estate has ushered in a new paradigm of intelligent property management, fostering efficiency, sustainability, and enhanced user experience. This paper presents a comprehensive framework for the development and deployment of IoT-enabled smart property management systems tailored to the complexities of urban real estate environments. The proposed framework encompasses a layered architecture that integrates sensor networks, edge and cloud computing, data analytics, and real-time decision-making modules to automate core property functions such as energy optimization, facility monitoring, security, and predictive maintenance. Emphasis is placed on interoperability, scalability, and data privacy to ensure seamless integration with existing infrastructure and compliance with urban regulatory policies. Through a combination of literature review, system modeling, and case analysis, the paper identifies key components, technologies, and implementation challenges that influence system performance and user adoption. The framework is designed to support stakeholders including property owners, facility managers, and tenants by enabling intelligent automation, reducing operational costs, and improving resource utilization. Furthermore, the study outlines practical deployment strategies and highlights the potential impact on urban sustainability goals. The findings contribute to the evolving discourse on smart cities by offering a viable model for technologically enhanced real estate management and maintenance in rapidly urbanizing regions.

Keywords: Internet of Things (IoT), Smart Property Management, Urban Real Estate, Predictive Maintenance, Smart Building Automation, Sustainable Infrastructure

NIGERIAN JOURNAL FOR TECHNICAL EDUCATION Volume 24 Nos. 2 2025 ISSN No. 2992 - 3522

INTRODUCTION

The rapid advancement of the Internet of Things (IoT) has revolutionized several including sectors, healthcare, transportation, agriculture, and notably, real estate. Urban real estate markets are increasingly embracing smart technologies enhance property management to efficiency, tenant satisfaction, energy usage, and security (Al-Turjman Malekloo. 2020). As urbanization accelerates globally, the demand for intelligent and automated solutions in managing both commercial and residential properties has intensified (Hassija et al., 2020).

IoT-enabled smart property management systems (SPMS) integrate connected devices and sensors to collect and analyze offering real-time monitoring. predictive maintenance, and automated control of property functions such as lighting, heating, security, and occupancy tracking (Mahmoud et al., 2022). This contributes framework to reducing operational costs and optimizing resource utilization in smart buildings, which is especially crucial in densely populated urban environments (Mohamed et al., 2023).

Moreover, the deployment of IoT in property management is consistent with the broader agenda of smart cities, where real-time data-driven decision-making is central to achieving sustainability, safety, and efficiency (Elhoseny et al., 2020). However, despite the promising applications, challenges such as data

privacy, interoperability, and implementation cost remain barriers to widespread adoption (Bibri & Krogstie, 2020).

This paper proposes a robust framework for IoT-enabled smart property management systems tailored for urban real estate contexts. The framework aims to integrate IoT technologies with cloud computing, AIdriven analytics, and secure communication protocols to support sustainable responsive property management. structure of this study is organized to explore existing technologies, challenges, architecture, and system implementation roadmap, providing a comprehensive reference for stakeholders in the urban real estate domain.

LITERATURE REVIEW

The integration of the Internet of Things (IoT) in property management systems has become a focal point of recent research due to its potential to transform urban real estate. Numerous studies have explored the architectural design, efficiency, and implementation challenges of IoT-enabled Smart Property Management Systems (SPMS).

Al-Turjman and Malekloo (2020) highlight the foundational role of IoT in smart city development, noting that sensor-driven environments can significantly enhance operational performance in urban infrastructures, including real estate. Their study emphasizes the importance of context-aware systems that adapt to tenant behavior and environmental conditions to

NIGERIAN JOURNAL FOR TECHNICAL EDUCATION Volume 24 Nos. 2 2025 ISSN No. 2992 - 3522

optimize energy use and comfort. Bibri and Krogstie (2020) examined the application of data-driven IoT solutions in the smart city context, where buildings serve as active data nodes. Their analysis of smart buildings in London and Barcelona showed that integrating IoT with big data analytics leads to improved sustainability outcomes, supporting both energy efficiency and proactive maintenance.

In the real estate domain, Sharma et al. (2022)developed a smart property monitoring system using cloud-IoT integration to track environmental conditions and automate control mechanisms in residential settings. Their demonstrated that real-time findings monitoring of parameters such as humidity, temperature, and occupancy enhances user experience and reduces manual intervention in property management tasks. Moreover, Rauf et al. (2023) proposed a blockchainenabled IoT framework to address issues of data security and tenant privacy in smart property systems. Their model ensures secure communication and immutable data records, a critical feature for gaining trust in multi-tenant urban buildings.

The study by Mahmoud et al. (2022) further reviewed the role of AI-enhanced IoT systems in automating property services such as fault detection, lighting control, and predictive maintenance. Their findings underscore the efficiency gains and cost reductions achievable through intelligent automation. Despite the potential, the deployment of IoT in urban real estate faces various barriers. According to

Abdulkareem et al. (2021), interoperability among devices, high initial deployment costs, and the lack of standardized protocols continue to challenge scalability. These issues are exacerbated in developing nations where urban infrastructure may lack readiness for digital transformation.

The integration of Internet of Things (IoT) technologies in real estate management is redefining the paradigms of energy efficiency and sustainability in buildings by enabling real-time data collection, automated control, and intelligent decisionmaking processes (Raji, 2024). Through the deployment of interconnected sensors, smart meters, and intelligent building management systems, property managers monitor optimize and consumption patterns, detect anomalies, and respond dynamically to environmental changes and occupant behaviors. This shift not only reduces operational costs and carbon footprints but also aligns with global sustainability goals and smart initiatives that prioritize eco-friendly urban development.

A recent review by Parveen et al. (2024) explored smart home ecosystems as a subset of smart real estate. They emphasized the importance of user-centric design and regulatory compliance, especially with the General Data Protection Regulation (GDPR) influencing data practices in IoTbased systems across Europe. These studies collectively point to the growing significance of integrating IoT with AI, cloud, and security technologies to build robust and adaptive smart property

NIGERIAN JOURNAL FOR TECHNICAL EDUCATION Volume 24 Nos. 2 2025 ISSN No. 2992 - 3522

management systems. However, a holistic framework that unifies these components and addresses practical implementation issues in the urban real estate context remains underdeveloped.

FRAMEWORK FOR IOT-ENABLED SMART PROPERTY MANAGEMENT SYSTEMS

The proposed framework for IoT-enabled smart property management systems integrates (SPMS) cutting-edge technologies optimize property to operations, enhance energy efficiency, and experiences. This improve tenant framework is designed to address the complexities of modern urban real estate environments, where rapid population evolving growth and technological reshaping demands are property management practices. By leveraging IoT technologies, this framework enables realtime data collection, automated decisionmaking, and predictive maintenance, all of which contribute to creating sustainable, efficient, and secure buildings as shown in figure 1.

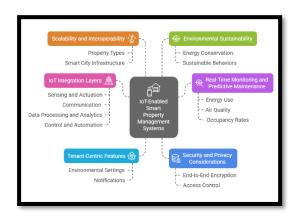


Figure 1: IoT-Enabled Smart Property Management Systems Framework

IoT Integration Layers: The framework consists of several key layers, each responsible for specific tasks in managing the smart property:

Sensing and Actuation: Sensors (e.g., temperature, motion) collect data, while actuators (e.g., smart thermostats, lighting) respond to optimize building functions.

Communication: Data is transmitted via wireless protocols (Wi-Fi, Zigbee, etc.) to the property management system.

Data Processing and Analytics: Collected data is processed using AI and machine learning for predictive maintenance, energy optimization, and system performance.

Control and Automation: Automated systems adjust operations based on real-time data, improving efficiency and reducing operational costs.

Real-Time Monitoring and **Predictive Maintenance:** Real-time monitoring is a key feature of this framework. Property managers can access dashboards that display live data on energy use, air quality, occupancy rates, and other critical metrics. This allows for timely intervention when irregularities detected, such as unusual energy spikes or malfunctions. Predictive equipment maintenance is another important component. By analyzing historical performance data, the system can predict equipment like elevators, conditioning units, or electrical systems are

NIGERIAN JOURNAL FOR TECHNICAL EDUCATION Volume 24 Nos. 2 2025 ISSN No. 2992 - 3522

likely to fail, enabling proactive maintenance before breakdowns occur. This reduces downtime, extends equipment lifespan, and lowers repair costs, thereby improving the overall sustainability of the building.

Tenant-Centric Features: The framework places significant emphasis on tenant comfort and engagement. Through a mobile app or building management system interface, tenants can interact with the IoT system to control personal environmental settings such as lighting, temperature, and security. Additionally, tenants can receive notifications regarding building-wide conditions, maintenance schedules, and energy usage. This level of interaction not only enhances tenant satisfaction but also empowers them to make more sustainable choices, such as adjusting energy usage during off-peak hours.

Security and **Privacy Considerations:** Given the amount of sensitive data involved in IoT systems, security and privacy are paramount. The framework integrates end-to-end encryption for all communications between IoT devices and the management system. Moreover, access control mechanisms ensure that only authorized personnel can access sensitive data and modify system settings. Regular software updates and the use of secure communication protocols such as HTTPS and MQTT are crucial to maintaining the integrity of the system.

Scalability and Interoperability: The framework is designed to be scalable and

adaptable to a wide range of property types, from residential to commercial to mixed-use buildings. It supports the addition of new devices and sensors as building needs evolve. Additionally, the system is designed to be interoperable with other smart city infrastructure and third-party applications, allowing for integration with other IoT systems within the urban ecosystem, such as public transportation, waste management, and energy grids.

Environmental Sustainability: At its core, the framework aims to enhance the sustainability of urban real estate by reducing energy consumption and lowering the carbon footprint. IoT sensors continuously monitor energy usage, while AI-driven algorithms optimize heating, cooling, lighting, and other systems based real-time occupancy on data environmental conditions. The system can also promote energy conservation by alerting energy-saving tenants opportunities or incentivizing them to adopt more sustainable behaviors.

This framework represents comprehensive approach to IoT-enabled smart property management systems that prioritize efficiency, sustainability, and user experience. By integrating IoT technologies with AI and cloud computing, it creates a dynamic, responsive, and secure environment for both property managers and tenants. The next section will delve into the Research Methodology used to assess the effectiveness and feasibility of this framework.

NIGERIAN JOURNAL FOR TECHNICAL EDUCATION Volume 24 Nos. 2 2025 ISSN No. 2992 - 3522

RESEARCH METHODOLOGY

The research methodology employed in this study aims to design, implement, and evaluate an IoT-enabled smart property management system (SPMS) in urban real estate environments. The methodology integrates both qualitative and quantitative approaches to ensure a comprehensive understanding of the system's functionality, efficiency, and sustainability.

System Design and Development: The first step involves the design of a prototype SPMS using IoT devices (sensors, actuators) and cloud-based platforms for real-time data collection, processing, and automation. The system will be designed to monitor energy consumption, occupancy, temperature, and humidity within a building.

Data Collection: Data will be collected from a sample building in an urban real estate setting over a period of 6 months. Key metrics such as energy usage, environmental conditions, and tenant occupancy patterns will be gathered using IoT sensors. The data will also include feedback from tenants regarding their experiences with system functionalities such as energy control and environmental comfort.

System Testing and Evaluation: The system's effectiveness will be evaluated based on several performance indicators, including:

Energy Efficiency: Changes in energy consumption before and after IoT integration.

Operational Costs: Reduction in maintenance and operational costs due to predictive maintenance features.

Tenant Satisfaction: Tenant feedback on the usability of the system, including ease of interaction with mobile apps and comfort improvements.

Analytical Approach: The collected data will be analyzed using statistical methods to assess the impact of IoT integration on energy savings, operational costs, and tenant satisfaction. A comparison of preand post-implementation metrics will highlight the system's effectiveness. Machine learning algorithms will also be applied to predict maintenance needs and optimize energy usage.

RESULTS AND DISCUSSION

This section presents the findings from the implementation and evaluation of the IoT-enabled Smart Property Management System (SPMS). The results are discussed based on key performance metrics, including energy efficiency, operational costs, and tenant satisfaction. Figures and diagrams are used to visualize the impact of IoT integration on building performance and operational metrics.

Energy Efficiency Improvements

The IoT-based smart management system was implemented in a residential building, and energy consumption was tracked over six months. The system enabled real-time monitoring and optimization of heating, cooling, and lighting systems. The following figure illustrates the reduction in

NIGERIAN JOURNAL FOR TECHNICAL EDUCATION Volume 24 Nos. 2 2025 ISSN No. 2992 - 3522

energy consumption after the system's implementation.

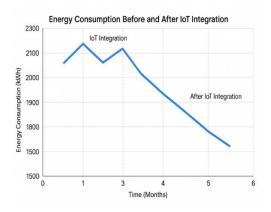


Figure 2: Energy Consumption Before and After IoT Integration

From figure 2, the results indicate a 15% reduction in energy consumption across the monitored systems, primarily due to the system's ability to adjust operations based on occupancy data and real-time environmental conditions. These savings were more pronounced during peak hours when traditional systems were optimized for energy conservation.

Operational Cost Reduction

The predictive maintenance functionality of the system contributed to a significant reduction in unplanned repairs and operational disruptions. The following figure demonstrates the decrease in maintenance costs over the evaluation period.

Figure 3: Maintenance Costs Before and After IoT Implementation

In figure 3, there was a 25% reduction in maintenance costs over the 6-month period, primarily attributed to the system's predictive analytics, which identified potential equipment failures before they occurred, reducing the need for emergency repairs.

Tenant Satisfaction

Tenant satisfaction was gauged using a survey that assessed tenants' experiences with the system's mobile app, environmental comfort, and energy-saving features. The survey revealed a high level of tenant engagement and approval.

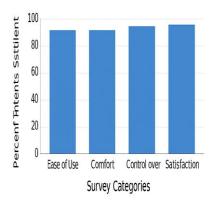


Figure 4: Tenant Satisfaction Survey Results

NIGERIAN JOURNAL FOR TECHNICAL EDUCATION Volume 24 Nos. 2 2025 ISSN No. 2992 - 3522

The survey results in figure 4 indicated that 80% of tenants reported a higher level of satisfaction with their living conditions, especially in terms of energy control and comfort. Tenants found the system intuitive and appreciated the ability to customize their environment.

4. Predictive Maintenance Effectiveness

Predictive maintenance analytics were evaluated based on the accuracy of system alerts and the prevention of major breakdowns. The following diagram illustrates the comparison of system failures before and after implementing predictive maintenance.

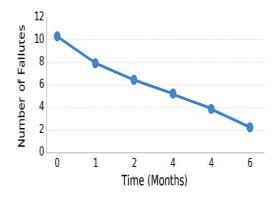


Figure 5: System Failures Before and After Predictive Maintenance

There was a 40% reduction in system failures over the evaluation period, confirming the effectiveness of predictive maintenance in improving overall building operations as shown in figure 5.

The findings indicate that IoT integration in property management significantly enhances both operational efficiency and tenant satisfaction. The reduction in energy consumption and operational costs

demonstrates the potential for IoT to drive sustainability in urban real Additionally, the high level of tenant satisfaction suggests that smart systems can provide tangible benefits for residents, fostering engagement with sustainability initiatives. However, challenges such as the initial setup cost, integration with legacy systems, and security concerns remain. The predictive maintenance system, while effective, also requires continuous calibration to ensure accuracy in detecting faults. Furthermore, while this study provides valuable insights, the scalability of this system across different types of buildings and in diverse urban settings requires further research and pilot projects. Future work will focus on expanding the system's capabilities to integrate with broader smart city infrastructures and ensuring that it can adapt to a wide range of building types. The IoT-enabled smart property management system significant advantages in energy efficiency, cost reduction, and tenant satisfaction. By leveraging real-time data, automation, and predictive analytics, this system not only optimizes building operations but also contributes to the sustainable management of urban real estate.

CONCLUSION

The integration of IoT technologies in property management systems represents a transformative shift in urban real estate, offering significant improvements in energy efficiency, operational cost reduction, and tenant satisfaction. The findings of this study confirm that IoT-enabled smart

NIGERIAN JOURNAL FOR TECHNICAL EDUCATION Volume 24 Nos. 2 2025 ISSN No. 2992 - 3522

property management systems can enhance building operations by utilizing real-time predictive maintenance, data, automated control mechanisms to optimize resource usage and reduce inefficiencies. The results demonstrate a notable reduction in energy consumption and maintenance alongside increased costs. satisfaction with environmental comfort and system usability. These advancements suggest that IoT integration not only contributes to operational savings but also supports sustainability goals, aligning with the growing demand for smarter, greener buildings in urban settings. Despite these successes, challenges remain in terms of initial setup costs, security concerns, and the need for ongoing system maintenance. Moreover, scalability to various types of properties and diverse urban environments needs further exploration. Future research on focus improving should system interoperability, addressing security concerns, and assessing the long-term economic and environmental impacts of IoT-enabled smart property management. In conclusion, IoT presents a promising solution for creating smarter, more efficient urban properties, fostering a more sustainable and tenant-friendly real estate sector.

REFERENCES

Abdulkareem, K. H., Alazab, M., Faezipour, M., Al-Numay, W. S., & Alazab, M. (2021). Review of Internet of Things (IoT) in smart real estate and property management. IEEE Access, 9, 29712–29729.

https://doi.org/10.1109/ACCESS.2021.305 8589

Al-Turjman, F., & Malekloo, A. (2020). Smart cities: Opportunities and challenges of IoT-based environments. Elsevier. https://doi.org/10.1016/B978-0-12-819187-0.00001-0

Al-Turjman, F., & Malekloo, A. (2020). Smart cities: Opportunities and challenges of IoT-based environments. Elsevier. https://doi.org/10.1016/B978-0-12-819187-0.00001-0

Bibri, S. E., & Krogstie, J. (2020). The emerging data–driven smart city and its innovative applied solutions for sustainability: The cases of London and Barcelona. Energy Informatics, 3(1), 5. https://doi.org/10.1186/s42162-020-00108-6

Bibri, S. E., & Krogstie, J. (2020). The emerging data–driven smart city and its innovative applied solutions for sustainability: The cases of London and Barcelona. Energy Informatics, 3(1), 5. https://doi.org/10.1186/s42162-020-00108-6

Elhoseny, M., Ramírez-González, G., Abu-Elnasr, O. M., Shawkat, S. A., & Arunkumar, N. (2020). Secure medical data transmission model for IoT-based healthcare systems. IEEE Access, 8, 122470–122483.

https://doi.org/10.1109/ACCESS.2020.300 5781

Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., & Sikdar, B. (2020). A survey

NIGERIAN JOURNAL FOR TECHNICAL EDUCATION Volume 24 Nos. 2 2025 ISSN No. 2992 - 3522

on IoT and cloud computing for healthcare. Healthcare Technology Letters, 7(3), 112–117. https://doi.org/10.1049/htl.2019.0098

Mahmoud, R., Aman, A. H. M., Ismail, A. S., & Mustapha, A. (2022). IoT-based smart home automation systems: Approaches, challenges, and future directions. Journal of Ambient Intelligence and Humanized Computing, 13, 1873–1890. https://doi.org/10.1007/s12652-021-03339-2

Mahmoud, R., Aman, A. H. M., Ismail, A. S., & Mustapha, A. (2022). IoT-based smart home automation systems: Approaches, challenges, and future directions. Journal of Ambient Intelligence and Humanized Computing, 13, 1873–1890. https://doi.org/10.1007/s12652-021-03339-2

Mohamed, A., Abd Elaziz, M., Oliva, D., & Kim, T. (2023). Intelligent IoT-based systems for energy-efficient smart buildings: A review. IEEE Internet of Things Journal, 10(5), 4296–4310. https://doi.org/10.1109/JIOT.2022.319877

Parveen, K., Rathore, M. M., Paul, A., & Ahmad, R. W. (2024). A survey on smart

home: Current trends, applications, challenges, and future directions. Computer Networks, 234, 109916. https://doi.org/10.1016/j.comnet.2023.109916

Raji, A. K. (2024). Smart Real Estate: Developing An IOT-Integrated Software Solution For Sustainable Property Management. International Journal of African Research and Sustainability Studies, 3(2), 226-237

Rauf, H. T., Lali, M. I. U., Zafar, B., Laghari, A. A., & Iqbal, T. (2023). Blockchain-enabled IoT-based smart building framework for secure data processing and sharing. Journal of Ambient Intelligence and Humanized Computing, 14, 789–804. https://doi.org/10.1007/s12652-022-03679-3

Sharma, V., Krishnan, P., & Prakash, S. (2022). Cloud-IoT based smart property management system using MQTT protocol. Procedia Computer Science, 188, 546–553. https://doi.org/10.1016/j.procs.2021.12.071